SET THEORY HOMEWORK 4

Due Thursday, March 30.

Problem 1. Let M be a countable transitive model of ZFC and let $Add(\omega, 1)$ be the poset of all partial finite functions from ω to $\{0, 1\}$. Let G be a generic filter over M. As we did in class, define $f^* : \omega \to \{0, 1\}$ to be $f^* = \bigcup G$. Recall that we proved in class that f^* is a total function with domain ω . Let $a = \{n \mid f^*(n) = 0\}$.

- (1) Show that both a and $\omega \setminus a$ are unbounded subsets of ω .
- (2) Show that $a \notin M$.

Problem 2. Show that G is a \mathbb{P} -generic filter over M (i.e. a filter that meets every dense $D \subset \mathbb{P}$ in M) iff G is a filter such that G meets every maximal antichain $A \subset \mathbb{P}$ with $A \in M$.

Problem 3. Suppose that G is a \mathbb{P} -generic filter over M and $p \in G$.

- (1) Suppose that $D \subset \mathbb{P}$ is **dense below** p i.e. for every $q \leq p$, there is $r \leq q$ with $r \in D$. Show that $G \cap D \neq \emptyset$.
- (2) Let $A \subset \mathbb{P}$ be an antichain such that for every $q \in A, q \leq p$, and for every $r \leq p$, there is $q \in A$, such that r, q are compatible i.e. they have a common extension. Show that $G \cap A \neq \emptyset$. Such a set A is called a maximal antichain below p.

Problem 4. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that σ and τ are two \mathbb{P} -names in M, such that both $\operatorname{dom}(\sigma), \operatorname{dom}(\tau) \subset \{\check{n} \mid n < \omega\}$. Let

$$\pi = \{ \langle \check{n}, p \rangle \mid (\exists q, r) (p \le q \land p \le r \land \langle \check{n}, q \rangle \in \sigma \land \langle \check{n}, r \rangle \in \tau) \}.$$

Show that $\pi_G = \tau_G \cap \sigma_G$ for any generic filter G over M

Problem 5. Let M be a countable transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that σ is a \mathbb{P} -names in M, such that both dom $(\sigma) \subset \{\check{n} \mid n < \omega\}$. Let

$$\pi = \{ \langle \check{n}, p \rangle \mid (\forall q \in \mathbb{P}) (\langle \check{n}, q \rangle \in \sigma \to q \perp p) \}.$$

Show that $\pi_G = \omega \setminus \sigma_G$ for any generic filter G over M Hint: show that $\{r \mid \exists p \geq r(\langle \check{n}, p \rangle \in \pi \lor \langle \check{n}, p \rangle \in \sigma)\}$ is dense.